Henry Bourne

Website | GitHub | Email: hwbourne@gmail.com | Mobile: (+44) 7880757776

ME: A COMPUTATIONAL STATISTICS AND DATA SCIENCE PHD STUDENT

• Currently in the second year of my PhD. I am located at the University of Bristol in the Compass CDT and my supervisor is Dr. Rihuan Ke.

Location: Bristol, United Kingdom

- My work leans towards computer vision with a focus on representation learning. In particular, contrastive self-supervised learning. More specifically looking at how to leverage density ratio estimation as a training objective to encourage the maximization of mutual information terms.
- This research has applications in multi-modal, multi-task and continual learning. Amongst other areas.

💁 TECHNICAL SKILLS

(My best) Tools : Python, Pytorch, MLX, R.

Deep-Learning : Theory and implementation.

Statistics : Wide breadth and depth, more so in 'machine learning' areas.

Maths : Probability theory, optimization, linear algebra.

CS: Theory of computation, all the programming paradigms, small bits of all the other important stuff

(architecture, algorithms, etc.).

Other : Know a fair bit of computational neuroscience. Some other tools I am proficient in using are Git,

Github, Bash, SLURM and many other bits and pieces.

(3)

EDUCATION

Masters at University of Bristol Joint Mathematics and Computer Science degree (MEng), graduated with first class honors.	Bristol, UK 2018 2022
Canford School A* Maths, A* (D2 Pre-U) Spanish, A Further Maths, A Physics, A EPQ (On CNN's in autonomous cars).	Dorset, UK 2016 2018
Canford School 5 A*'s, 4 A's, B.	Dorset, UK 2014 2016

PROJECTS

Latent Representations and Catastrophic Forgetting (Supervised by Rihuan Ke) Python, Pytorch, SLURM Source Code

- Used the encoding portions of various networks to investigate the effect of latent representations on catastrophic forgetting [5, 7, 9] in a continual learning [2, 8] task.
- Used both frozen and trainable versions of the encoder to investigate the effect of fixed vs. flexible latent representations on catastrophic forgetting.
- Pretrained encoders using a mixture of classification and representation learning objectives to investigate their potential effect on catastrophic forgetting.
- Found immediate and complete forgetting in all networks bar the largest (Resnet50) when the encoder was frozen, suggesting using frozen feature extractors could somewhat help mitigate catastrophic forgetting.

Meta-Learning (Masters Diss., supervised by Song Liu) Python, Numpy, Matplotlib, HIPS-autograd Source Code

- Meta-learning [6] involves creating models able to "learn how best to learn", I investigated a particular subset of meta-learning which uses deep learning to infer a prior for the weights of a neural network.
- Using this prior as a starting point, it can then quickly learn new similar tasks using k-shot learning.
- Implemented the Model-Agnostic-Meta-Leaning (MAML) algorithm [4] with a fully connected network from scratch on a toy regression task.
- Showed improved performance and reduced computation compared to 'regular' deep learning.
- Augmented the MAML algorithm to work on temporal data.
- Created a novel extension of MAML called MATML which achieved better performance on temporal data.

Psychedelics and Vision (Bachelors Diss., supervised by Conor Houghton) Python, Numpy, Matplotlib Source Code

- Validated whether a field equation model for how visual hallucinations arise in the visual cortex [3] worked in a simulation of discrete spiking neurons.
- Simulated a spiking neural network of both excitatatory and inhibitory LIF neurons [1] using biologically plausible wiring from scratch.
- · Created a tool for translating the activity from the simulated network into its corresponding retinal imagery.
- Found that increasing excitatory synapse strength lead to the appearence of hallucinatory patterns validating the claims of the field equation model.

Others...

Python, C++, SLURM, Github

- **Slune**: A python package I've made for conducting blazing fast hyper-parameter tuning on SLURM powered computing clusters by taking advantage of the fact that it's embarrassingly parallel. Source Code
- **NeuralNetcpp**: A neural network I wrote from scratch in C++. I am also still working on this one. First larger project I've done with C++ so it is a little rough around the edges! <u>Source Code</u>
- **Hill Sprints App**: Currently developing an app in swift specifically for tracking and analysing sprint based interval training and for finding hills to sprint up.
- Open Source Contributions: Have contributed to the Ivy framework.

WORK

Teaching assistant roles (2023-Present): Helped run the labs for the machine learning unit and currently teaching the mathematical programming unit.

Responsible Innovation Facilitator (2023-Present): In this role I help run responsible innovation workshops where we train PhD students across disciplines in how to engage in responsible and ethical research. As part of the role I have to run workshops, reflect on ethical practice in my own research and develop tailor made workshops for statistics PhD students.

OTHER

Extra information: Native English, Spanish to good proficiency, UK drivers license, Dual UK and NZ nationality.

Hobbies: Photography based art, poetry, running (doing a marathon this year!), callisthenics, MMA, reading and listening to podcasts (novels, philosophy, history, science, travel writing, etc.), seeing the !

REFERENCES

- [1] Larry F Abbott. "Lapicque's introduction of the integrate-and-fire model neuron (1907)". In: *Brain research bulletin* 50.5-6 (1999), pp. 303–304.
- [2] Matthias De Lange et al. "A continual learning survey: Defying forgetting in classification tasks". In: *IEEE transactions on pattern analysis and machine intelligence* 44.7 (2021), pp. 3366–3385.
- [3] G Bard Ermentrout and Jack D Cowan. "A mathematical theory of visual hallucination patterns". In: *Biological cybernetics* 34.3 (1979), pp. 137–150.
- [4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks". In: *International conference on machine learning*. PMLR. 2017, pp. 1126–1135.
- [5] Robert M French. "Catastrophic forgetting in connectionist networks". In: *Trends in cognitive sciences* 3.4 (1999), pp. 128–135.
- [6] Timothy Hospedales et al. "Meta-learning in neural networks: A survey". In: *IEEE transactions on pattern analysis and machine intelligence* 44.9 (2021), pp. 5149–5169.
- [7] Michael McCloskey and Neal J Cohen. "Catastrophic interference in connectionist networks: The sequential learning problem". In: *Psychology of learning and motivation*. Vol. 24. Elsevier, 1989, pp. 109–165.
- [8] German I Parisi et al. "Continual lifelong learning with neural networks: A review". In: *Neural networks* 113 (2019), pp. 54–71.
- [9] Roger Ratcliff. "Connectionist models of recognition memory: constraints imposed by learning and forgetting functions." In: *Psychological review* 97.2 (1990), p. 285.